Advertisements
Advertisements
Question
Evaluate: `int (sec x)/(1 + cosec x) dx`
Solution
`I = int (sec x)/(1 + cosec x) dx`
`I = int (1/cos x)/((sin x + 1)/sin x) dx`
`I = int 1/(cos x) xx (sinx)/(1+ sin x) dx`
`I = int (tan x)/(1+sin x) dx`
`I = int (tan x)/(cos^2 x) (1- sin x)dx`
Put tan x = t
`sec^2 x dx = dt`
`= intt (1 - t/(sqrt(1+t^2)))dt`
`= int t dt - int t^2/sqrt(1+t^2) dt`
Let `I _1 = int t^2/sqrt(1 + t^2) dt`
`= t^2/2 - int [(1 + t^2 -1)/sqrt(1 + t^2)]dt`
`I_1 = int [sqrt(1+t^2) - 1/sqrt(1 + t^2)] dt`
`I_1 = 1/2 tsqrt(1 + t^2) + 1/2 log |t + sqrt(1 + t^2)| - log |t + sqrt(1 + t^2)| + c`
`I_1 = 1/2 tan x sqrt(1 + tan^2x) + 1/2 log |tan x + sqrt(1+tan^2 x)| - log |tan x + sec x|+ c`
`:. I = t^2/2 - [1/2 tan x . sec x + 1/2 log |tanx + sec x| - log |tanx + sec x| + C]`
`:. I = (tan^2x)/2 - 1/2 tan x . sec x + 1/2 log |tan x + sec x| + c`
APPEARS IN
RELATED QUESTIONS
Evaluate :`intxlogxdx`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Write a value of
Write a value of\[\int \log_e x\ dx\].
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int 1/(cos x - sin x)` dx = _______________
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int(log(logx))/x "d"x`
`int (7x + 9)^13 "d"x` ______ + c
`int secx/(secx - tanx)dx` equals ______.
`int x^2/sqrt(1 - x^6)dx` = ______.
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate `int(1+x+x^2/(2!))dx`