Advertisements
Advertisements
Question
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Solution
Let `I = int (sqrt tan x)/(sinx cos x)` dx
`= int sqrt tan x/(sin x/ cos x * cos ^2) dx`
`= int sqrt tanx/tan x * sec^2 x dx`
`I = int (tan x)^((-1)/2)* sec^2 x dx`
Put tan x = t
sec2 x dx = dt
Hence, `I = int t^((-1)/2)dt = (t ^(1/2 + 1))/(1/2 + 1) + C`
`= 2 t^(1/2) + C`
`= 2 sqrt(tan x) + C`
APPEARS IN
RELATED QUESTIONS
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
`int sqrt(1 + "x"^2) "dx"` =
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int x^2/sqrt(1 - x^6)` dx = ________________
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int (sin4x)/(cos 2x) "d"x`
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int sin^-1 x`dx = ?
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
`int(log(logx) + 1/(logx)^2)dx` = ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
`int (logx)^2/x dx` = ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`