English

Evaluate the following integrals : ∫cos2xsin2x.cos2xdx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`

Sum

Solution

`int (cos2x)/(sin^2x.cos^2x)dx`

= `int(cos^2x - sin^2x)/(sin^2x.cos^2x)dx`

= `int(1/sin^2x - 1/cos^2x)dx`

= `int "cosec"^2x dx - int sec^2 x  dx`

= – cot x – tan x + c.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.1 [Page 102]

APPEARS IN

RELATED QUESTIONS

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

(4x + 2) `sqrt(x^2 + x +1)`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

\[\int x \sin^3 x\ dx\]

Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate `int (3"x"^2 - 5)^2` dx


If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


Fill in the Blank.

`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int x/(x + 2)  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


Evaluate `int(3x^2 - 5)^2  "d"x`


If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


Find `int dx/sqrt(sin^3x cos(x - α))`.


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate `int(1+ x + x^2/(2!)) dx`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate `int 1/(x(x-1)) dx`


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×