English

Integrate the following functions w.r.t. x : 3e2x+54e2x-5 - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`

Sum

Solution

Let I = `int (3e^(2x) + 5)/(4e^(2x) - 5).dx`
Put,
Numerator = `"A (Denominator) + B"[d/dx("Denominator")]`

∴ 3e2x + 5 = `"A"(4e^(2x) - 5) + "B"[d/dx(4e^(2x) - 5)]`

= A(4e2x – 5) + B(4.e2x x 2 – 0)

∴ 3e2x + 5 = (4A + 8B)e2x – 5A
Equating the coeffiecient of e2x and constant on both sides, we get
4A + 8B = 3        ...(1)
and
– 5A = 5
∴ A = – 1
∴ from (1), 4(– 1) + 8B = 3
∴ 8B = 7
∴ B = `(7)/(8)`
∴ 3e2x + 5 = `- (4e^(2x) - 5) + 7/8(8e^(2x))`

∴ I = `int[(-(4e^(2x) - 5) +7/8(8e^(2x)))/(4e^(2x) - 5)].dx`

= `int[-1 +(7/8(8e^(2x)))/(4e^(2x) - 5)].dx`

= `int 1 dx + (7)/(8) int (8e^(2x))/(4e^(2x) - 5).dx`

= `- x + (7)/(8)log|4e^(2x) -  5| + c    ...[∵ int (f'(x))/f(x)dx = log|f(x)| + c]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (A) [Page 110]

APPEARS IN

RELATED QUESTIONS

Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

`xsqrt(1+ 2x^2)`


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

`(1+ log x)^2/x`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Evaluate the following:

`int (1)/(25 - 9x^2)*dx`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following : `int (logx)2.dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int 1/(xsin^2(logx))  "d"x`


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


`int x^3"e"^(x^2) "d"x`


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


`int1/(4 + 3cos^2x)dx` = ______ 


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int ("d"x)/(x(x^4 + 1))` = ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


Write `int cotx  dx`.


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


`int secx/(secx - tanx)dx` equals ______.


Evaluate `int 1/("x"("x" - 1)) "dx"`


Evaluate `int1/(x(x - 1))dx`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate:

`int(cos 2x)/sinx dx`


`int (cos4x)/(sin2x + cos2x)dx` = ______.


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4)) dx`


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate `int 1/(x(x-1)) dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×