Advertisements
Advertisements
Question
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Solution
Let I = `int (3e^(2x) + 5)/(4e^(2x) - 5).dx`
Put,
Numerator = `"A (Denominator) + B"[d/dx("Denominator")]`
∴ 3e2x + 5 = `"A"(4e^(2x) - 5) + "B"[d/dx(4e^(2x) - 5)]`
= A(4e2x – 5) + B(4.e2x x 2 – 0)
∴ 3e2x + 5 = (4A + 8B)e2x – 5A
Equating the coeffiecient of e2x and constant on both sides, we get
4A + 8B = 3 ...(1)
and
– 5A = 5
∴ A = – 1
∴ from (1), 4(– 1) + 8B = 3
∴ 8B = 7
∴ B = `(7)/(8)`
∴ 3e2x + 5 = `- (4e^(2x) - 5) + 7/8(8e^(2x))`
∴ I = `int[(-(4e^(2x) - 5) +7/8(8e^(2x)))/(4e^(2x) - 5)].dx`
= `int[-1 +(7/8(8e^(2x)))/(4e^(2x) - 5)].dx`
= `int 1 dx + (7)/(8) int (8e^(2x))/(4e^(2x) - 5).dx`
= `- x + (7)/(8)log|4e^(2x) - 5| + c ...[∵ int (f'(x))/f(x)dx = log|f(x)| + c]`
APPEARS IN
RELATED QUESTIONS
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`(1+ log x)^2/x`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate the following : `int (logx)2.dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int 1/(xsin^2(logx)) "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int x^3"e"^(x^2) "d"x`
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int1/(4 + 3cos^2x)dx` = ______
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int ("d"x)/(x(x^4 + 1))` = ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
Write `int cotx dx`.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
`int secx/(secx - tanx)dx` equals ______.
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate `int1/(x(x - 1))dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`int(cos 2x)/sinx dx`
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate `int 1/(x(x-1)) dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).