Advertisements
Advertisements
Question
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Solution
Let I = `int "x" sqrt(1 + "x"^2)` dx
Put 1 + x2 = t
∴ 2x . dx = dt
∴ x . dx = `1/2` dt
∴ I = `1/2 int sqrt"t" * "dt"`
`= 1/2 int "t"^(1/2) *` dt
`= 1/2 * "t"^(3/2)/(3/2)` + c
`= 1/3 "t"^(3/2)` + c
∴ I = `1/3 (1 + "x"^2)^(3/2)` + c
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`sin x/(1+ cos x)`
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
`int x^3 e^(x^2) dx`