Advertisements
Advertisements
Question
Integrate the functions:
`(log x)^2/x`
Solution
Let `I = int (log x)^2/x` dx
Put log x = t
`1/x` dx = dt
Hence, `I = int t^2` dt
`I = t^3/3 + C`
`I = 1/3 (log x)^3 + C`
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Write a value of
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of
The value of \[\int\frac{1}{x + x \log x} dx\] is
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate: `int "e"^sqrt"x"` dx
`int 1/(cos x - sin x)` dx = _______________
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).