English

∫ √ X 2 + X + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\sqrt{x^2 + x + 1} \text{ dx}\]
Sum

Solution

\[\int \sqrt{x^2 + x + 1} \text{ dx}\]
\[ = \int \sqrt{x^2 + x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 + 1} \text{ dx}\]
\[ = \int \sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[ = \left( \frac{x + \frac{1}{2}}{2} \right) \sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} + \frac{3}{8}\text{ log } \left| \left( x + \frac{1}{2} \right) + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| + C \left[ \because \int\sqrt{x^2 + a^2}dx = \frac{1}{2}x\sqrt{x^2 + a^2} + \frac{1}{2} a^2 \text{ ln }\left| x + \sqrt{x^2 + a^2} \right| + C \right]\]
\[ = \left( \frac{2x + 1}{4} \right) \sqrt{x^2 + x + 1} + \frac{3}{8}\text{ log }\left| \left( 2x + 1 \right) + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.28 [Page 154]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.28 | Q 2 | Page 154

RELATED QUESTIONS

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

`1/(1 - tan x)`


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


\[\int x \sin^3 x\ dx\]

Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Evaluate: `int 1/(sqrt("x") + "x")` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int x^2/sqrt(1 - x^6)` dx = ________________


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int logx/x  "d"x`


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate:

`int(cos 2x)/sinx dx`


`int (cos4x)/(sin2x + cos2x)dx` = ______.


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate `int 1/(x(x-1)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×