Advertisements
Advertisements
Question
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Solution
x2dy = (2xy + y2)dx
`=>dy/dx=(2xy+y^2)/x^2.......(i)`
Let y=vx,
`dy/dx=v+xdv/dx`
Substituting in (i), we get
`v+x (dv)/dx=(2vx^2+v^2x^2)/x^2`
`=>v+x (dv)/dx=2v+v^2`
`=>x (dv)/dx=v^2+v`
`=>(dv)/(v^2+v)=dx/x`
integrating both sides
`=>int(dv)/(v^2+v)=intdx/x`
`=>(v+1-v)/(v(v+1))dv=intdx/x`
`=>logv-log|v+1|=logx+logC`
`=>log|v/(v+1)|=log|Cx|`
`=>log|(y/x)/(y/x+1)|=log|Cx|`
`=>y/(y+x)=Cx` [Removing logarithm in both sides]
`therefore y=Cxy+Cx^2` ,which is the general solution.
Putting y=1 and x=1,
`1=C + C`
`=>2C=1`
`=>c=1/2y`
`=(xy)/2+x^2/2`
`therefore 2y=xy+x^2,` which is the particular solution.
APPEARS IN
RELATED QUESTIONS
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Write a value of
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Evaluate the following integrals : tan2x dx
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate: `int 1/(sqrt("x") + "x")` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int cos sqrtx` dx = _____________
`int x/(x + 2) "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
`int (f^'(x))/(f(x))dx` = ______ + c.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx