English

Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1. - Mathematics

Advertisements
Advertisements

Question

Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.

Solution

x2dy = (2xy + y2)dx

`=>dy/dx=(2xy+y^2)/x^2.......(i)`

Let y=vx,

`dy/dx=v+xdv/dx`

Substituting in (i), we get

`v+x (dv)/dx=(2vx^2+v^2x^2)/x^2`

`=>v+x (dv)/dx=2v+v^2`

`=>x (dv)/dx=v^2+v`

`=>(dv)/(v^2+v)=dx/x`

integrating both sides

`=>int(dv)/(v^2+v)=intdx/x`

`=>(v+1-v)/(v(v+1))dv=intdx/x`

`=>logv-log|v+1|=logx+logC`

`=>log|v/(v+1)|=log|Cx|`

`=>log|(y/x)/(y/x+1)|=log|Cx|`

`=>y/(y+x)=Cx` [Removing logarithm in both sides]

`therefore y=Cxy+Cx^2` ,which is the general solution.

Putting y=1 and x=1,

`1=C + C`

`=>2C=1`

`=>c=1/2y`

`=(xy)/2+x^2/2`

`therefore 2y=xy+x^2,` which is the particular solution.

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Panchkula Set 1

RELATED QUESTIONS

Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Integrate the functions:

sec2(7 – 4x)


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Evaluate the following integrals : tan2x dx


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`


Evaluate the following integrals : `int cos^2x.dx`


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate: `int 1/(sqrt("x") + "x")` dx


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int cos sqrtx` dx = _____________


`int x/(x + 2)  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


`int (f^'(x))/(f(x))dx` = ______ + c.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate `int 1/("x"("x" - 1)) "dx"`


Evaluate `int(1 + x + x^2/(2!))dx`


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×