English

Integrate the following functions w.r.t. x : 4ex-252ex-5 - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`

Sum

Solution

Let I = `int (4e^x - 25)/(2e^x - 5).dx`
Put,
Numerator = `"A (Denominator) + B"[d/dx ("Denominator")]`

∴ 4ex – 25 = `"A"(2e^x - 5) + "B"[d/dx(2e^x - 5)]`

= A(2ex – 5) + B(2ex – 0)

∴ 4ex – 25 = (2A + 2B)ex – 5A
Equating the coefficient of ex and constant on both sides, we get
2A + 2B = 4         ...(1)
and
5A = 25         
∴ A = 5
∴ from (1),2(5) + 2B = 4
∴ 2B = – 6
∴ B = – 3
∴ 4ex – 25 = 5(2ex –  5) –  3 (2ex)

∴ I = `int[(5(2e^xx - 5) - 3(2e^x))/(2e^x - 5)].dx`

= `int[5 - (3(2e^x))/(2e^x - 5)].dx`

= `5 int 1dx - 3 int (2e^x)/(2e^x - 5].dx`

= 5x – 3 log|2ex – 5| + c   ...`[∵ int (f'(x))/f(x)dx = log|f(x)| + c]` 

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (A) [Page 110]

APPEARS IN

RELATED QUESTIONS

Find : `int(x+3)sqrt(3-4x-x^2dx)`


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Integrate the functions:

`cos x /(sqrt(1+sinx))`


Integrate the functions:

`sqrt(tanx)/(sinxcos x)`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


Evaluate: `int (2y^2)/(y^2 + 4)dx`


\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`


Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following function w.r.t. x:

x9.sec2(x10)


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x : tan5x


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


State whether the following statement is True or False.

If `int x  "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.


Evaluate: `int "e"^sqrt"x"` dx


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________


`int (log x)/(log ex)^2` dx = _________


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int x^x (1 + logx)  "d"x`


`int cot^2x  "d"x`


`int cos^7 x  "d"x`


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int sec^6 x tan x   "d"x` = ______.


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int(1+ x + x^2/(2!)) dx`


Evaluate the following.

`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


`int x^3 e^(x^2) dx`


Evaluate `int (1+x+x^2/(2!)) dx`


Evaluate:

`int sqrt((a - x)/x) dx`


`int 1/(sin^2x cos^2x)dx` = ______.


`int (cos4x)/(sin2x + cos2x)dx` = ______.


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×