English

Integrate the following w.r.t. x : 3x3-2x+5xx - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`

Sum

Solution

`int(3x^3 - 2x + 5)/(xsqrt(x))dx`

= `intx^((-3)/(2))(3x^3 - 2x + 5)dx`

= `int(3x^(3/2) - 2x^(-1/2) + 5x^(-3/2))dx`

= `3intx^(3/2)dx - 2intx^(-1/2) dx + 5int x^(-3/2)dx`

= `3(x^(3/2 + 1)/(3/2 + 1)) - 2(x^(1/2 + 1)/(-1/2 + 1)) + 5(x^(-3/2 + 1)/(-3/2 + 1)) + c`

= `(6)/(5)x^2sqrt(x) - 4sqrt(x) - (10)/sqrt(x) + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.1 [Page 102]

APPEARS IN

RELATED QUESTIONS

Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`cos sqrt(x)/sqrtx`


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


Evaluate: `int (2y^2)/(y^2 + 4)dx`


\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following function w.r.t. x:

x9.sec2(x10)


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


`int sqrt(1 + "x"^2) "dx"` =


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int x^x (1 + logx)  "d"x`


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


`int ("d"x)/(x(x^4 + 1))` = ______.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


`int sqrt(x^2 - a^2)/x dx` = ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate `int 1/("x"("x" - 1)) "dx"`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate:

`int sqrt((a - x)/x) dx`


Evaluate:

`int sin^2(x/2)dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×