English

Evaluate `Integration 1/(3+ 2 Sinx + Cosx) Dx` - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate `int 1/(3+ 2 sinx + cosx) dx`

Solution

Let I = `int 1/(3+2sinx + cosx) dx`

Put tan `x/2 = t` Then `dx = 2/(1+ t^2) dt`

`sinx = (2t)/(1+t^2) and cos x = (1- t^2)/(1+ t^2)`

`:. I = int  (2dt"/" (1+t^2))/(3+2 ((2t)/(1+t^2))+((1-t^2)/(1+t^2)))`

`= 2int (dt"/"(1+t^2))/((3(1+t^2) + 4t + (1-t^2))/(1+t^2))`

= `2int (dt)/(2t^2 + 4t + 4) = int (dt)/((t+1)^2 + 1)`

`= tan^(-1) (t + 1) + c`

`= tan^(-1)[tan (x/2) + 1)] + c`

shaalaa.com
  Is there an error in this question or solution?
2017-2018 (March)

APPEARS IN

RELATED QUESTIONS

Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

`xsqrt(1+ 2x^2)`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


Integrate the functions:

sec2(7 – 4x)


Integrate the functions:

`(sin^(-1) x)/(sqrt(1-x^2))`


Integrate the functions:

cot x log sin x


Solve: dy/dx = cos(x + y)


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


Integrate the following w.r.t. x : x3 + x2 – x + 1


Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : cos7x


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Evaluate the following:

`int (1)/(25 - 9x^2)*dx`


Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Evaluate the following : `int (logx)2.dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


State whether the following statement is True or False.

If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`


Evaluate: `int log ("x"^2 + "x")` dx


Evaluate: `int "e"^sqrt"x"` dx


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int x^x (1 + logx)  "d"x`


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


`int cot^2x  "d"x`


`int(log(logx))/x  "d"x`


`int x^3"e"^(x^2) "d"x`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int dx/(1 + e^-x)` = ______


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int sec^6 x tan x   "d"x` = ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


`int (f^'(x))/(f(x))dx` = ______ + c.


The value of `intsinx/(sinx - cosx)dx` equals ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


`int cos^3x  dx` = ______.


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


`int secx/(secx - tanx)dx` equals ______.


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


`int x^3 e^(x^2) dx`


Evaluate the following

`int x^3/sqrt(1+x^4) dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate:

`int sin^2(x/2)dx`


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×