Advertisements
Advertisements
Question
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Solution
Let I = `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`
= `int_(logsqrt(2))^(logsqrt(3)) 1/(((e^(2x) + 1))/e^x xx ((e^(2x) - 1))/e^x) dx`
= `int_(logsqrt(2))^(logsqrt(3)) e^(2x)/((e^(4x) - 1))dx`
Let e2x = t
Then, 2e2x dx = dt
= `int_2^3 dt/(2(t^2 - 1))`
= `1/2 int_2^3 dt/(t^2 - 1^2)`
= `[1/2 xx 1/(2 xx 1) log|(t - 1)/(t + 1)|]_2^3`
= `1/4 [log ((3 - 1)/(3 + 1)) - log ((2 - 1)/(2 + 1))]`
= `1/4 [log 2/4 - log 1/3]`
= `1/4 [log 1/2 + log 3]`
= `1/4 [log 1/2 xx 3]`
= `1/4 log 3/2`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Write a value of
Write a value of
Write a value of
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
`int "dx"/(9"x"^2 + 1)= ______. `
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Evaluate the following : `int sinx/(sin 3x).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
`int sqrt(1 + sin2x) "d"x`
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).