Advertisements
Advertisements
Question
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Solution
Let I=\[\int\]tan x . sec3x dx
Let sec x = t
⇒ sec x tan x dx = dt
\[ = \frac{\sec^3 x}{3} + C \left( \because x = \sec x \right)\]
APPEARS IN
RELATED QUESTIONS
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
`int (dx)/(sin^2 x cos^2 x)` equals:
Solve: dy/dx = cos(x + y)
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Integrate the following w.r.t. x : x3 + x2 – x + 1
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int cos^7 x "d"x`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int sqrt(x^2 - a^2)/x dx` = ______.
`int cos^3x dx` = ______.
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`