Advertisements
Advertisements
प्रश्न
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
उत्तर
Let I=\[\int\]tan x . sec3x dx
Let sec x = t
⇒ sec x tan x dx = dt
\[ = \frac{\sec^3 x}{3} + C \left( \because x = \sec x \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate `int 1/((2"x" + 3))` dx
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
`int x^3 e^(x^2) dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int 1/(x(x-1)) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).