Advertisements
Advertisements
प्रश्न
Integrate the functions:
`((x+1)(x + logx)^2)/x`
उत्तर
Let `I = int ((x + 1) (x + log x)^2)/x dx`
`= int (x + log x)^2 (1 + 1/x) dx`
Put x + log x = t
⇒ `(1 + 1/x) dx = dt`
∴ `I = int t^2 dt = t^3/3 + C`
`= 1/3 (x + log x)^3 + C`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate :`intxlogxdx`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Write a value of
The value of \[\int\frac{1}{x + x \log x} dx\] is
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
`int x^2/sqrt(1 - x^6)` dx = ________________
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int cot^2x "d"x`
`int (7x + 9)^13 "d"x` ______ + c
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
`int x^3"e"^(x^2) "d"x`
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int sec^6 x tan x "d"x` = ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int(log(logx) + 1/(logx)^2)dx` = ______.
Evaluate `int (1+x+x^2/(2!))dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`