Advertisements
Advertisements
प्रश्न
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
उत्तर
Let I = `int (x - 2)^2 sqrt(x)*dx`
= `int (x^2 - 4x + 4)sqrt(x)*dx`
= `int (x^(5/2) - 4x^(3/2) + 4x^(1/2))*dx`
= `int x^(5/2)*dx - 4 int x^(3/2)*dx + 4 int x^(1/2)*dx`
= `x^(7/2)/((7/2)) - 4 x^(5/2)/((5/2)) + 4 x^(3/2)/((3/2))`
= `(2)/(7)x^(7/2) - 8/5x^(5/2) + (8)/(3)x^(3/2) + c`.
APPEARS IN
संबंधित प्रश्न
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
cot x log sin x
Integrate the functions:
`1/(1 - tan x)`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Write a value of
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Evaluate the following : `int (logx)2.dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int cos sqrtx` dx = _____________
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
The value of `intsinx/(sinx - cosx)dx` equals ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
`int secx/(secx - tanx)dx` equals ______.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate `int (1)/(x(x - 1))dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate `int1/(x(x-1))dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`