Advertisements
Advertisements
प्रश्न
`int cos sqrtx` dx = _____________
पर्याय
`2 [sqrtx sin sqrtx + cos sqrtx] + "c"`
`sqrtx sin sqrtx + cos sqrtx + "c"`
`2 [sqrtx cos sqrtx + sin sqrtx] + "c"`
`1/2 [sqrtx sin sqrtx - cos sqrtx] + "c"`
उत्तर
`2 [sqrtx sin sqrtx + cos sqrtx] + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`1/(1 + cot x)`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
Write a value of
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals : `int sin 4x cos 3x dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate `int (5"x" + 1)^(4/9)` dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int (sin4x)/(cos 2x) "d"x`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
`int (f^'(x))/(f(x))dx` = ______ + c.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
The value of `intsinx/(sinx - cosx)dx` equals ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int cos^3x dx` = ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate `int 1/(x(x-1))dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int 1/(x(x-1)) dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`