Advertisements
Advertisements
प्रश्न
Write a value of
उत्तर
\[\text{ Let I } = \int \left( \frac{1 + \log x}{3 + x \log x} \right)dx\]
\[\text{ Let 3 }+ x \log x = t\]
\[ \Rightarrow 0 + \left( x . \frac{1}{x} + \log x \right)dx = dt\]
\[ \Rightarrow \left( 1 + \log x \right)dx = dt\]
\[ \therefore I = \int \frac{dt}{t}\]
\[ = \text{ log t + C }\]
\[ = \text{ log }\left( 3 + x \log x \right) + C \left( \because t = 3 + x \log x \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
cot x log sin x
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals : `int sin x/cos^2x dx`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
`int sqrt(1 + "x"^2) "dx"` =
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
Evaluate: ∫ |x| dx if x < 0
`int (sin4x)/(cos 2x) "d"x`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
`int 1/(sinx.cos^2x)dx` = ______.
`int secx/(secx - tanx)dx` equals ______.
Evaluate the following.
`int 1/(x^2+4x-5) dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`