Advertisements
Advertisements
प्रश्न
Integrate the functions:
sec2(7 – 4x)
उत्तर
Let `I = int sec^2` (7 - 4x) dx
Put 7 - 4x = t
- 4 dx = dt or dx `= - 1/4` dt
Hence, `I = - 1/4 int sec^2` t dt
`= - 1/4` tan t + C
`= - 1/4` tan (7 - 4x) + C
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`1/(1 + cot x)`
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
The value of \[\int\frac{1}{x + x \log x} dx\] is
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
`int cos sqrtx` dx = _____________
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int (7x + 9)^13 "d"x` ______ + c
`int x^3"e"^(x^2) "d"x`
`int (logx)^2/x dx` = ______.
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
`int x^3 e^(x^2) dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate:
`int sin^2(x/2)dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`