Advertisements
Advertisements
प्रश्न
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
उत्तर
Let `I = int (sin^-1 x)/sqrt(1 - x^2)` dx
Put sin-1 x = t
`1/sqrt(1 - x^2)` dx = dt
Hence, `I = int t dt`
`=1/2t^2 + C`
`=1/2 (sin^-1 x)^2 + C`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
cot x log sin x
Integrate the functions:
`1/(1 - tan x)`
Evaluate: `int 1/(x(x-1)) dx`
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Evaluate `int (3"x"^2 - 5)^2` dx
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Evaluate: ∫ |x| dx if x < 0
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int 1/(sinx.cos^2x)dx` = ______.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
`int x^3 e^(x^2) dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`