Advertisements
Advertisements
प्रश्न
Integrate the functions:
`1/(1 - tan x)`
उत्तर
Let `I = int 1/ (1 - tan x)dx = int 1/ (1 - sin x/ cos x) dx`
`= int cos x/ (cos x - sin x) dx = 1/2 int (2 cos x)/ (cos x - sin x) dx`
`1/2 int ((cos x - sin x) - (-sin x - cos x))/(cos x - sin x)`
`1/2 int 1 dx - 1/2 int (-sin x - cos x)/ (cos x - sin x) dx`
`x/2 - 1/2 int (-sin x - cos x)/ (cos x - sin x) dx + C_1`
`I = x/2 - 1/2 I_1 + C_1` ....(i)
Where, `I_1 = int (-sinx - cos x)/(cos x - sin x) dx`
Put cos x - sin x = t
⇒ (-sin x - cos x) dx = dt
`I_1 = int dt/t = log |t| + C_2`
= log | cos x - sin x| + C2 ...(ii)
From (i) and (ii), we get
⇒ `I = x/2 - 1/2 log |cos x - sin x| + C`
APPEARS IN
संबंधित प्रश्न
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
cot x log sin x
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Write a value of\[\int \log_e x\ dx\].
Write a value of
Write a value of
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int cos^7 x "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
`int dx/(1 + e^-x)` = ______
`int(log(logx) + 1/(logx)^2)dx` = ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
`int "cosec"^4x dx` = ______.
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2 + 4x-5)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`intsqrt(sec x/2 - 1)dx`