Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
उत्तर
Let I = `int (20 + 12e^x)/(3e^x + 4).dx`
∴ 20 + 12ex = `"A"(3e^x + 4) + "B"d/dx(3e^x + 4)`
= 3Aex + 4A + 3Bex
∴ 20 + 12ex = 4A + (3A + 3B) ex
By Equating the coefficient of on both sides, we get
4A = 20 and 3A + 3B = 12
Solving these equations, we get
A = 5 and B = - 1
∴ 20 + 12ex = 5(3ex + 4) – 3ex
∴ I = `int(5(3e^x + 4) - 3e^x)/(3e^x + 4) dx`
= `5 intdx - int (3e^x)/(3e^x + 4] dx`
∴ `"I" = 5x - log|3e^x + 4| + c` ... [∵ `int(f'(x))/f(x)dx = log |f (x)| + c`]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`x/(e^(x^2))`
Write a value of
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
`int "dx"/(9"x"^2 + 1)= ______. `
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Integrate the following w.r.t. x : x3 + x2 – x + 1
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate `int "x - 1"/sqrt("x + 4")` dx
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int (log x)/(log ex)^2` dx = _________
`int (cos2x)/(sin^2x) "d"x`
`int cos^7 x "d"x`
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int1/(4 + 3cos^2x)dx` = ______
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
`int x^3 e^(x^2) dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate `int1/(x(x - 1))dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`