मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫2+x2-x.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`

बेरीज

उत्तर

Let I = `int sqrt((2 + x)/(2 - x)).dx`

= `int sqrt((2 + x)/(2 - x) xx (2 + x)/(2 + x)).dx`

= `int (2 + x)/sqrt(4 - x^2).dx`

= `int (2)/sqrt(4 - x^2).dx + int x/sqrt(4 - x^2).dx`

= `2 int (1)/sqrt(2^2 - x^2).dx + (1)/(2) int (2x)/sqrt(4 - x^2).dx`

= I1 + I2                        ...(Let)

I1 = `2 int (1)/sqrt(2^2 - x^2).dx`

= `2 sin^-1 (x/2) + c_1`

In I2, put 4 – x2 = t
∴ – 2x dx =  dt
∴  2x dx = – dt

I2 = `-(1)/(2) int t^(-1/2) dt`

= `-(1)/(2).t^(1/2)/((1/2)) + c_2`

= `- sqrt(4 - x^2) + c_2`

I = `2 sin^-1 (x/2) - sqrt(4 - x^2) + c`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.2 (B) [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.2 (B) | Q 1.08 | पृष्ठ १२३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

`1/(1 + cot x)`


Integrate the functions:

`1/(1 - tan x)`


`int (dx)/(sin^2 x cos^2 x)` equals:


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`


Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : tan5x


Integrate the following functions w.r.t. x : cos7x


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


`int (log x)/(log ex)^2` dx = _________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


`int (7x + 9)^13  "d"x` ______ + c


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


`int secx/(secx - tanx)dx` equals ______.


Evaluate the following.

`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate the following:

`int (1) / (x^2 + 4x - 5) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate `int 1/(x(x-1))dx`


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×