Advertisements
Advertisements
प्रश्न
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
उत्तर
`I=∫(x+2)/sqrt(x^2+5x+6)dx `
Multiplying and dividing by 2, we get
`I=1/2∫(2x+4)/sqrt(x^2+5x+6)dx `
Adding and subtracting 1 to the numerator, we get:
`I=1/2∫(2x+4+1-1)/sqrt(x^2+5x+6)dx`
` I=1/2∫(2x+5)/sqrt(x2+5x+6)dx -1/2∫1/sqrt(x^2+5x+6)dx`
`"Let" I_1=1/2∫(2x+5)/sqrt(x^2+5x+6)dx `
Put x2+5x+6=t
Differentiating with respect to x, we get:
(2x+5)dx=dt
`I_1=intdt/sqrtt`
`I_1=2sqrtt+c`
`I_1=2sqrt(x^2+5x+6)+c`
`1/2 int "dt"/sqrt t =∫1/sqrt(x^2+5x+(5/2)^2-(5/2)^2+6)dx`
`1/2 int "dt"/sqrt t - 1/2 int "dx"/sqrt(x^2+5x+6 + (5/2)^2 - 25/4)dx`
`1/2 "t"^(1/2)/(1/2) int 1/sqrt((x+5/2)^2-(1/2)^2)dx`
`= 1/2 xx 2 xx "t"^(1/2) - 1/2 |"log" x + 5/2 + sqrt (x^2 + 5x + 6)| + "C"`
`= sqrt (x^2 + 5x + 6) - 1/2 "log" |sqrt (x^2 + 5x + 6)| + "C"`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
cot x log sin x
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Evaluate the following : `int (logx)2.dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
`int sqrt(1 + "x"^2) "dx"` =
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
`int x^x (1 + logx) "d"x`
`int 1/(xsin^2(logx)) "d"x`
`int (cos2x)/(sin^2x) "d"x`
`int1/(4 + 3cos^2x)dx` = ______
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate `int (1 + x + x^2/(2!)) dx`