मराठी

Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.

बेरीज

उत्तर

`dy/dx=1+x+y+xy`

`dy/dx` = 1 + x + y + xy

`dy/dx = 1( 1 + x ) + y ( 1 + x)`

`dy/dx=(1+x)(1+y)`        

`dy/(1+y)=(1+x)dx`

Integrating both sides:

`intdy/(1+y)=int(1+x)dx`

`log|1+y|=x+x^2/2+C`

y = 0 when  x = 1     (given)

`log1=1+1/2+C`

`C=−3/2`

`⇒log|1+y|=x+x^2−3/2` is the required solution.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March) All India Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The differential equation of `y=c/x+c^2` is :

(a)`x^4(dy/dx)^2-xdy/dx=y`

(b)`(d^2y)/dx^2+xdy/dx+y=0`

(c)`x^3(dy/dx)^2+xdy/dx=y`

(d)`(d^2y)/dx^2+dy/dx-y=0`


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`


Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is


The number of arbitrary constants in the particular solution of a differential equation of third order is


Which of the following differential equations has y = x as one of its particular solution?


x (e2y − 1) dy + (x2 − 1) ey dx = 0


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Find the differential equation of all non-horizontal lines in a plane.


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.


The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


Find the general solution of the differential equation:

`log((dy)/(dx)) = ax + by`.


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×