Advertisements
Advertisements
प्रश्न
Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.
उत्तर
`dy/dx=1+x+y+xy`
`dy/dx` = 1 + x + y + xy
`dy/dx = 1( 1 + x ) + y ( 1 + x)`
`dy/dx=(1+x)(1+y)`
`dy/(1+y)=(1+x)dx`
Integrating both sides:
`intdy/(1+y)=int(1+x)dx`
`log|1+y|=x+x^2/2+C`
y = 0 when x = 1 (given)
`log1=1+1/2+C`
`C=−3/2`
`⇒log|1+y|=x+x^2−3/2` is the required solution.
APPEARS IN
संबंधित प्रश्न
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
x + y = tan–1y : y2 y′ + y2 + 1 = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is
(1 + y + x2 y) dx + (x + x3) dy = 0
(x2 + 1) dy + (2y − 1) dx = 0
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
The differential equation for which y = acosx + bsinx is a solution, is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
The member of arbitrary constants in the particulars solution of a differential equation of third order as
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.