हिंदी

If y = e–x (Acosx + Bsinx), then y is a solution of ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If y = e–x (Acosx + Bsinx), then y is a solution of ______.

विकल्प

  • `("d"^2y)/("d"x^2) + 2("d"y)/("d"x)` = 0

  • `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y ` = 0

  • `("d"^2y)/("d"x^2) + 2 ("d"y)/("d"x) + 2y` = 0

  • `("d"^2y)/("d"x^2) + 2y` = 0

MCQ
रिक्त स्थान भरें

उत्तर

If y = e–x (Acosx + Bsinx), then y is a solution of `("d"^2y)/("d"x^2) + 2 ("d"y)/("d"x) + 2y` = 0.

Explanation:

Given equation is y = e–x (Acosx + Bsinx)

Differentiating both sides, w.r.t. x, we get

 `("d"y)/("d"x)` = e–x (–A sin x + B cos x) – e–x (A cos x + B sin x)

`("d"y)/("d"x)` = e–x (–A sin x + B cos x) – y

Again differentiating w.r.t. x, we get

`("d"^2y)/("d"x^2) = "e"^-x (-"A" cos x - "B" sin x) - "e"^-x (-"A" sinx + "B"cosx) - ("d"y)/("d"x)`  

⇒ `("d"^2y)/("d"x^2) = -"e"^-x ("A" cosx + "B" sinx) - [("d"y)/("d"x) + y] - ("d"y)/("d"x)`

⇒ `("d"^2y)/("d"x^2) = - y - ("d"y)/("d"x) - y - ("d"y)/("d"x)`

⇒ `("d"^2y)/("d"x^2) = - 2 ("d"y)/("d"x) - 2y`

⇒ `("d"^2y)/("d"x^2) + 2("d"y)/("d"x) + 2y` = 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise [पृष्ठ १९५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise | Q 37 | पृष्ठ १९५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that

\[y = \frac{\pi}{2}\] when x = 1.

\[\frac{dy}{dx} - y \cot x = cosec\ x\]


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


\[\frac{dy}{dx} + y = 4x\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


Find the differential equation of all non-horizontal lines in a plane.


The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.


If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.


The number of arbitrary constants in the general solution of a differential equation of order three is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×