Advertisements
Advertisements
प्रश्न
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
विकल्प
x2 + y2 = 12x + C
x2 + y2 = 3x + C
x3 + y3 = 3x + C
x3 + y3 = 12x + C
उत्तर
x3 + y3 = 12x + C
We have,
\[ x^2 + y^2 \frac{dy}{dx} = 4\]
\[ \Rightarrow y^2 \frac{dy}{dx} = 4 - x^2 \]
\[ \Rightarrow y^2 dy = \left( 4 - x^2 \right)dx\]
Integrating both sides, we get
\[\int y^2 dy = \int\left( 4 - x^2 \right)dx\]
\[ \Rightarrow \frac{y^3}{3} = 4x - \frac{x^3}{3} + D\]
\[ \Rightarrow y^3 = 12x - x^3 + 3D\]
\[ \Rightarrow x^3 + y^3 = 12x + C,\text{ where }C = 3D\]
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
If y = etan x+ (log x)tan x then find dy/dx
Solve the differential equation `cos^2 x dy/dx` + y = tan x
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is
If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.
The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.
Find the general solution of `"dy"/"dx" + "a"y` = emx
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The member of arbitrary constants in the particulars solution of a differential equation of third order as
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.