Advertisements
Advertisements
प्रश्न
Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.
उत्तर
We have,
\[x dy = \left( 2 x^2 + 1 \right)dx\]
\[ \Rightarrow dy = \left( \frac{2 x^2 + 1}{x} \right)dx\]
\[ \Rightarrow dy = \left( 2x + \frac{1}{x} \right)dx\]
Integrating both sides, we get
\[\int dy = \int\left( 2x + \frac{1}{x} \right)dx\]
\[ \Rightarrow y = x^2 + \log \left| x \right| + C . . . . . . . . . . \left( 1 \right)\]
Now the given curve passes through (1, 1)
Therefore, when x = 1, y = 1\]
\[ \therefore 1 = 1 + 0 + C\]
\[ \Rightarrow C = 0\]
Putting the value of `C` in (1), we get
\[y = x^2 + \log\left| x \right|\]
APPEARS IN
संबंधित प्रश्न
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
x + y = tan–1y : y2 y′ + y2 + 1 = 0
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The number of arbitrary constants in the general solution of differential equation of fourth order is
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
(x + y − 1) dy = (x + y) dx
\[\frac{dy}{dx} + 5y = \cos 4x\]
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
Solution of differential equation xdy – ydx = 0 represents : ______.
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.