Advertisements
Advertisements
प्रश्न
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
विकल्प
y = `(x^2 + "c")/(4x^2)`
y = `x^2/4 + "c"`
y = `(x^4 + "c")/x^2`
y = `(x^4 + "c")/(4x^2)`
उत्तर
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is y = `(x^4 + "c")/(4x^2)`.
Explanation:
I.F. = `"e"^(int 2/x "d"x) = "e"^(2logx)`
= `"e"^(logx^2)`
= x2.
Therefore, the solution is y.
x2 = `int x^2 * x "d"x`
= `x^4/4 + "k"`,
i.e., y = `(x^4 + "c")/(4x^2)`.
APPEARS IN
संबंधित प्रश्न
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
\[\frac{dy}{dx} - y \tan x = e^x\]
(x3 − 2y3) dx + 3x2 y dy = 0
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.
Find the general solution of `"dy"/"dx" + "a"y` = emx
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.