हिंदी

Find the general solution of the differential equation edydx(1+y2)+(x-etan-1y)dydx = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.

योग

उत्तर

Given equation is `(1 + y^2) + (x - "e"^(tan^(-1) y)) "dy"/"dx"` = 0

⇒ `(x - "e"^(tan^-1y)) "dy"/"dx" = -(1 + y^2)`

⇒ `"dy"/"dx" = (-(1 + y^2))/(x - "e"^(tan^-1 y))`

⇒ `"dx"/"dy" = (x - "e"^(tan^-1y))/(-(1 + y^2))`

⇒ `"dx"/"dy" = - x/((1 + y^2)) + ("e"^(tan^-1y))/(1 + y^2)` 

⇒ `"dx"/"dy" + x/((1 + y^2)) = ("e"^(tan^-1 y))/(1 + y^2)`

Here, P = `1/(1 + y^2)` and Q = `("e"^(tan^-1 y))/(1 + y^2)`

∴ Integrating factor I.F. = `"e"^(int Pdy)`

= `"e"^(int 1/(1 + y^2) "d"y)`

= `"e"^(tan^-1 y)`

∴ Solution is `x . "I"."F". = int "Q". "I"."F".  "d"y + "c"`

⇒ `x . "e"^(tan^-1 y) = int ("e"^(tan^-1 y))/(1 + y^2) * "e"^(tan^-1 y) "dy" + "c"`

Put `"e"^(tan^-1 y)` = t

∴ `"e"^(tan^-1 y) * 1/(1 + y^2) "dy"` = dt

∴ `x . "e"^(tan^-1 y) = int "t" . "dt" + "c"`

⇒ `x . "e"^(tan^-1 y) = 1/2 "t"^2 + "c"`

⇒ `x . "e"^(tan^-1 y) = 1/2 ("e"^(tan^-1 y))^2 + "c"`

⇒ x = `1/2 ("e"^(tan^-1 y)) + "c"/("e"^(tan^-1 y))`

⇒ 2x = `"e"^(tan^-1 y) + (2"c")/("e"^(tan^-1 y)`

⇒ `2x . "e"^(tan^-1 y) = ("e"^(tan^-1y))^2 + 2"c"`

Hence, this is the required general solution.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise [पृष्ठ १९४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise | Q 17 | पृष्ठ १९४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


How many arbitrary constants are there in the general solution of the differential equation of order 3.


The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is


The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that

\[y = \frac{\pi}{2}\] when x = 1.

\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]


Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.


Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is `(2x)/y^2.`


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.


The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×