Advertisements
Advertisements
प्रश्न
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]
उत्तर
We have,
\[\frac{dy}{dx} = e^x \sin x\]
\[\Rightarrow dy = e^x \sin x dx\]
Integrating both sides, we get
\[\int dy = \int e^x \sin x dx\]
\[ \Rightarrow y = I + C . . . . . . . . . . \left( 1 \right)\]
\[ \Rightarrow I = \sin x\int e^x dx - \int\left[ \frac{d}{dx}\left( \sin x \right)\int e^x dx \right]dx\]
\[ \Rightarrow I = \sin x e^x - \int\cos x\ e^x dx\]
\[ \Rightarrow I = \sin x e^x - \cos x\int e^x dx + \int\left[ \frac{d}{dx}\left( \cos x \right)\int e^x dx \right]dx\]
\[ \Rightarrow I = \sin x e^x - \cos x e^x - \int\sin x e^x dx\]
\[ \Rightarrow I = \sin x e^x - \cos x e^x - I ...........\left[\text{From (2)} \right]\]
\[ \Rightarrow 2I = \sin x e^x - \cos x e^x \]
\[ \Rightarrow I = \frac{1}{2} e^x \left( \sin x - \cos x \right) . . . . . . . . . \left( 3 \right)\]
From (1) and (3) we get
\[ \therefore y = \frac{1}{2} e^x \left( \sin x - \cos x \right) + C . . . . . . . . . \left( 4 \right)\]
Now equation of the curve passes through (0, 0)
Therefore when x = 0; y = 0
Putting x = 0 and y = 0 in (4) we get
\[ \therefore 0 = \frac{1}{2} e^0 \left( \sin 0 - \cos 0 \right) + C\]
\[ \Rightarrow C = \frac{1}{2}\]
Substituting the value of `C` in (4), we get
\[y = \frac{1}{2} e^x \left( \sin x - \cos x \right) + \frac{1}{2}\]
\[ \Rightarrow 2y - 1 = e^x \left( \sin x - \cos x \right)\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
Find the differential equation representing the curve y = cx + c2.
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C : y′ + sin x = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
(x + y − 1) dy = (x + y) dx
x2 dy + (x2 − xy + y2) dx = 0
\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.