हिंदी

Find the Equation of a Curve Passing Through the Point (0, 0) and Whose Differential Equation is D Y D X = E X Sin X . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]

योग

उत्तर

We have,

\[\frac{dy}{dx} = e^x \sin x\]

\[\Rightarrow dy = e^x \sin x dx\]

Integrating both sides, we get

\[\int dy = \int e^x \sin x dx\]

\[ \Rightarrow y = I + C . . . . . . . . . . \left( 1 \right)\]

\[ \Rightarrow I = \sin x\int e^x dx - \int\left[ \frac{d}{dx}\left( \sin x \right)\int e^x dx \right]dx\]

\[ \Rightarrow I = \sin x e^x - \int\cos x\ e^x dx\]

\[ \Rightarrow I = \sin x e^x - \cos x\int e^x dx + \int\left[ \frac{d}{dx}\left( \cos x \right)\int e^x dx \right]dx\]

\[ \Rightarrow I = \sin x e^x - \cos x e^x - \int\sin x e^x dx\]

\[ \Rightarrow I = \sin x e^x - \cos x e^x - I ...........\left[\text{From (2)} \right]\]

\[ \Rightarrow 2I = \sin x e^x - \cos x e^x \]

\[ \Rightarrow I = \frac{1}{2} e^x \left( \sin x - \cos x \right) . . . . . . . . . \left( 3 \right)\]

From (1) and (3) we get

\[ \therefore y = \frac{1}{2} e^x \left( \sin x - \cos x \right) + C . . . . . . . . . \left( 4 \right)\]

Now equation of the curve passes through (0, 0)

Therefore when x = 0; y = 0

Putting x = 0 and y = 0 in (4) we get

\[ \therefore 0 = \frac{1}{2} e^0 \left( \sin 0 - \cos 0 \right) + C\]

\[ \Rightarrow C = \frac{1}{2}\]

Substituting the value of `C` in (4), we get

\[y = \frac{1}{2} e^x \left( \sin x - \cos x \right) + \frac{1}{2}\]

\[ \Rightarrow 2y - 1 = e^x \left( \sin x - \cos x \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 70 | पृष्ठ १४७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Find the differential equation representing the curve y = cx + c2.


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


(x + y − 1) dy = (x + y) dx


x2 dy + (x2 − xy + y2) dx = 0


\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Solve the following differential equation:-

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


If y = e–x (Acosx + Bsinx), then y is a solution of ______.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


General solution of `("d"y)/("d"x) + y` = sinx is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×