हिंदी

Show that the general solution of the differential equation dydx+y2+y+1x2+x+1=0 is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.

योग

उत्तर

Differential equations

`dy/dx + (y^2 + y + 1)/(x^2 + x + 1)` = 0

or  `dy/(y^2 + y + 1) + dx/(x^2 + x + 1) = 0`

and  `dy/(y^2 + y + 1/4 + 3/4) + dx/(x^1 + x + 1/4 + 3/4) = 0`

or  `dy/((y + 1/2)^2 + 3/4) + dx/((x + 1/2)^2 + 3/4)` = 0

On integrating,

`int dy/((y + 1/2)^2 + 3/4) + int dx/((x + 1/2)^2 + 3/4)` = 0

⇒  `2/sqrt3 tan^-1 ((y + 1/2)/(sqrt3/2)) + 2/sqrt3 tan^-1 ((x + 1/2)/(sqrt3/2))` = C

⇒ `2/sqrt3 tan^-1 ((2y + 1)/sqrt3) + 2/sqrt3 tan^-1 ((2x + 1)/sqrt3)` = C

⇒`2/sqrt3 tan^-1 [((2y + 1)/sqrt3 + (2x + 1)/sqrt3)/(1 - (2y + 1)/sqrt3 xx (2x + 1)/sqrt3)]` = C

⇒ `2/sqrt3 tan^-1 [(sqrt3 (2x + 2y + 2))/(3 - (2y + 1)(2x + 1))]` = C

⇒ `tan^-1 [(sqrt3(2x + 2y + 2))/(2 - 2x - 2y - 4xy)] = sqrt3/2`C

`= tan^-1 sqrt3 A`

Where  C = `2/sqrt3 tan^-1 (sqrt3 A)`

`=> (2sqrt3 (x + y + 1))/(2 (1 - x - y - 2xy)) = sqrt3A`

∴ The required solution is

x + y + 1 = A(1 – x – y – 2xy)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise 9.7 [पृष्ठ ४२०]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise 9.7 | Q 7 | पृष्ठ ४२०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


How many arbitrary constants are there in the general solution of the differential equation of order 3.


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is


The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents


Which of the following differential equations has y = x as one of its particular solution?


The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


x (e2y − 1) dy + (x2 − 1) ey dx = 0


\[\frac{dy}{dx} = \left( x + y \right)^2\]


\[\frac{dy}{dx} - y \cot x = cosec\ x\]


\[\frac{dy}{dx} - y \tan x = e^x\]


(x2 + 1) dy + (2y − 1) dx = 0


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.


Find the differential equation of all non-horizontal lines in a plane.


Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.


y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


tan–1x + tan–1y = c is the general solution of the differential equation ______.


Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


Which of the following differential equations has `y = x` as one of its particular solution?


Find the general solution of the differential equation:

`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×