हिंदी

D Y D X = ( X + Y ) 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = \left( x + y \right)^2\]

योग

उत्तर

We have,

\[\frac{dy}{dx} = \left( x + y \right)^2 . . . . . \left( 1 \right)\]

Let `x + y = v`

\[ \Rightarrow 1 + \frac{dy}{dx} = \frac{dv}{dx}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1\]

Therefore, (1) becomes

\[ \therefore \frac{dv}{dx} - 1 = v^2 \]

\[ \Rightarrow \frac{dv}{dx} = v^2 + 1\]

\[ \Rightarrow \frac{1}{v^2 + 1}dv = dx\]

Integrating both sides, we get

\[\int\frac{1}{v^2 + 1}dv = \int dx\]

\[ \Rightarrow \tan^{- 1} v = x + C\]

\[ \Rightarrow v = \tan\left( x + C \right)\]

\[ \Rightarrow x + y = \tan\left( x + C \right) \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 35 | पृष्ठ १४६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Find the particular solution of the differential equation  `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0


Find the differential equation representing the curve y = cx + c2.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is


\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[\frac{dy}{dx} + \frac{y}{x} = x^2\]


Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is `(2x)/y^2.`


Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.


Solve the differential equation:  ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`


Find the differential equation of all non-horizontal lines in a plane.


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.


The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.


The solution of differential equation coty dx = xdy is ______.


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×