Advertisements
Advertisements
प्रश्न
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
उत्तर
Given that: (1 + tan y)(dx – dy) + 2xdy = 0
⇒ (1 + tan y)dx – (1 + tan y)dy + 2xdy = 0
⇒ (1 + tan y)dx – (1 + tan y – 2x)dy = 0
⇒ `(1 + tan y) "dx"/"dy" = (1 + tan y - 2x)`
⇒ `"dx"/"dy" = (1 + tan y - 2x)/(1 + tan y)`
⇒ `"dx"/"dy" = 1 - (2x)/(1 + tan y)`
⇒ `"dx"/"dy" + (2x)/(1 + tan y)` = 1
Here, P = `2/(1 + tan y)` and Q = 1
Integrating factor I.F.
= `"e"^(int 2/(1 + tan y) "dy")`
= `"e"^(int (2cosy)/(siny + cosy)"d"y)`
= `"e"^(int (siny + cosy - siny + cosy)/((siny + cosy)) "dy"`
= `"e"^(int(1 + (cosy - siny)/(siny + cosy))"d"y)`
= `"e"^(int 1."d"y) . "e"^(int(cosy - siny)/(siny + cosy)"d"y)`
= `"e"^y . "e"^(log(siny + cosy)`
= `"e"^y . (siny + cos y)`
So, the solution is `x xx "I"."F". = int "Q" xx "I"."F". "d"y + "c"`
⇒ `x . "e"^y (siny + cosy) = int 1 . "e"^y (siny + cosy)"d"y + "c"`
⇒ `x . "e"^y )siny + cosy) = "e"^y . sin y + "c"` .....`[because int x^x "f"(x) + "f'"(x)]"d"x = "e"^x "f"(x) + "c"]`
⇒ `x(siny + cos y) = sin y + "c" . "e"^-y`
Hence, the required solution is `x(siny + cos y) = sin y + "c" . "e"^-y`.
APPEARS IN
संबंधित प्रश्न
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
The number of arbitrary constants in the general solution of differential equation of fourth order is
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.