हिंदी

The number of solutions of dddydx=y+1x-1 when y (1) = 2 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 

विकल्प

  • None

  • One

  • Two

  • Infinite

MCQ
रिक्त स्थान भरें

उत्तर

The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is one

Explanation:

The given differential equation is `("d"y)/("d"x) = (y + 1)/(x - 1)`

⇒ `("d"y)/(y + 1) = ("d"x)/(x - 1)`

Integrating both sides, we get

`int ("d"y)/(y + 1) = int ("d"x)/(x - 1)`

⇒ log(y + 1) = log(x – 1) + log c

⇒ log(y + 1) – log(x – 1) = log c

⇒ `log|(y + 1)/(x - 1)|` = log c

⇒ `(y + 1)/(x - 1)` = c

Put x = 1 and y = 2

⇒ `(2 + 1)/(1 - 1)` = c

∴ c = `oo`

∴ `(y +1)/(x - 1) = 1/0`

⇒ x – 1 = 0

⇒ x = 1.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise [पृष्ठ १९७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise | Q 45 | पृष्ठ १९७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the differential equation representing the curve y = cx + c2.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y = sqrt(a^2 - x^2 )  x in (-a,a) : x + y  dy/dx = 0(y != 0)`


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


How many arbitrary constants are there in the general solution of the differential equation of order 3.


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


\[\frac{dy}{dx} + y = 4x\]


\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]


For the following differential equation, find the general solution:- `y log y dx − x dy = 0`


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


Solve the following differential equation:-

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]


Find the differential equation of all non-horizontal lines in a plane.


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


tan–1x + tan–1y = c is the general solution of the differential equation ______.


The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.


The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×