Advertisements
Advertisements
प्रश्न
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
उत्तर
We have,
\[y \log y\ dx - x\ dy = 0\]
\[ \Rightarrow y \log y dx = x dy\]
\[ \Rightarrow \frac{1}{x}dx = \frac{1}{y \log y}dy\]
\[ \Rightarrow \frac{1}{y \log y}dy = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1}{y \log y}dy = \int\frac{1}{x}dx . . . . . \left( 1 \right)\]
Putting log y = t
\[ \Rightarrow \frac{1}{y}dy = dt\]
Therefore (1) becomes
\[\int\frac{1}{t}dt = \int\frac{1}{x}dx\]
\[ \Rightarrow \log \left( t \right) = \log x + \log C\]
\[ \Rightarrow \log \left( \log y \right) = \log x + \log C\]
\[ \Rightarrow \log \left( \log y \right) = \log Cx\]
\[ \Rightarrow \log y = Cx\]
\[ \Rightarrow y = e^{Cx}\]
APPEARS IN
संबंधित प्रश्न
Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0
Also, find the particular solution when x = 0 and y = π.
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the differential equation representing the curve y = cx + c2.
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Solve the differential equation `dy/dx -y =e^x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C : y′ + sin x = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
x + y = tan–1y : y2 y′ + y2 + 1 = 0
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
(1 + y + x2 y) dx + (x + x3) dy = 0
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
Solution of differential equation xdy – ydx = 0 represents : ______.
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.
Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.