Advertisements
Advertisements
प्रश्न
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
उत्तर
`dy/dx=(y+sqrt(x^2+y^2))/x`
Put y = vx
`therefore dy/dx=v+x (dv)/dx`
`therefore (1) becomes, v+x (dv)/dx=(vx+sqrt(x^2+v^2x^2))/x`
`therefore v+x (dv)/dx =v+sqrt(1+v^2)`
`therefore 1/sqrt(1+v^2) dv=1/x dx`
Integrating, we get,
`int 1/sqrt(1+v^2) dv=int 1/x dx+c_1`
`therefore log |v+sqrt(1+v^2)|=log|x|+logc, where c_1=logc`
`therefore (y+sqrt(x^2+y^2))/x=cx`
`(y+sqrt(x^2+y^2))=cx^2 ` is the general solution
APPEARS IN
संबंधित प्रश्न
Find the differential equation representing the curve y = cx + c2.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The number of arbitrary constants in the general solution of differential equation of fourth order is
Which of the following differential equations has y = x as one of its particular solution?
Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.
\[\frac{dy}{dx} = \left( x + y \right)^2\]
cos (x + y) dy = dx
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
x2 dy + (x2 − xy + y2) dx = 0
\[\frac{dy}{dx} + y = 4x\]
\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
The solution of differential equation coty dx = xdy is ______.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.