हिंदी

Solution of the Differential Equation D Y D X + Y X (A) X (Y + Cos X) = Sin X + C (B) X (Y − Cos X) = Sin X + C (C) X (Y + Cos X) = Cos X + C (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is

विकल्प

  • x (y + cos x) = sin x + C

  • x (y − cos x) = sin x + C

  • x (y + cos x) = cos x + C

  • none of these

MCQ

उत्तर

x (y + cos x) = sin x + C

 

We have,
\[\frac{dy}{dx} + \frac{y}{x} = \sin x\]
\[ \Rightarrow \frac{dy}{dx} + \frac{1}{x}y = \sin x . . . . . \left( 1 \right)\]
\[\text{ Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get }\]
\[P = \frac{1}{x} \]
\[Q = \sin x\]
Now, 
\[I . F . = e^{\int\frac{1}{x}dx} = e^{log\left| x \right|} \]
\[ = x\]
\[\text{ Therefore, integration of }\left( 1 \right) \text{ is given by }\]
\[y \times I . F . = \int x^2 \times I . F . dx + C\]

\[ \Rightarrow yx = x\int\sin x dx - \int\left[ \frac{d}{dx}\left( x \right)\int\sin x dx \right]dx + C\]
\[ \Rightarrow yx = - x \cos x + \int\cos x dx + C\]
\[ \Rightarrow yx + x \cos x = \sin x + C\]
\[ \Rightarrow x\left( y + \cos x \right) = \sin x + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - MCQ [पृष्ठ १४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
MCQ | Q 18 | पृष्ठ १४१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

The differential equation of `y=c/x+c^2` is :

(a)`x^4(dy/dx)^2-xdy/dx=y`

(b)`(d^2y)/dx^2+xdy/dx+y=0`

(c)`x^3(dy/dx)^2+xdy/dx=y`

(d)`(d^2y)/dx^2+dy/dx-y=0`


Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]


\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]


\[\frac{dy}{dx} = \left( x + y \right)^2\]


(x + y − 1) dy = (x + y) dx


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


\[\frac{dy}{dx} + y = 4x\]


\[\frac{dy}{dx} + 5y = \cos 4x\]


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


For the following differential equation, find a particular solution satisfying the given condition:

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \frac{y}{x} = x^2\]


Solve the following differential equation:-

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]


Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx


Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is `(2x)/y^2.`


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]


The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`


The differential equation for which y = acosx + bsinx is a solution, is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


Find the general solution of the differential equation:

`log((dy)/(dx)) = ax + by`.


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×