हिंदी

The Equation of the Curve Satisfying the Differential Equation Y (X + Y3) Dx = X (Y3 − X) Dy and Passing Through the Point (1, 1) is - Mathematics

Advertisements
Advertisements

प्रश्न

The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is

विकल्प

  • y3 − 2x + 3x2 y = 0

  • y3 + 2x + 3x2 y = 0

  • y3 + 2x −3x2 y = 0

  • none of these

MCQ

उत्तर

y3 + 2x −3x2 y = 0

 

We have,

\[y\left( x + y^3 \right)dx = x\left( y^3 - x \right)dy\]

\[\text{ Here, }\left( xy + y^4 \right)dx = \left( x y^3 - x^2 \right)dy\]

\[ \Rightarrow xydx + y^4 dx - x y^3 dy + x^2 dy = 0\]

\[ \Rightarrow x\left( ydx + xdy \right) + y^3 \left( ydx - xdy \right) = 0\]

\[ \Rightarrow xd\left( xy \right) + x^2 y^3 \frac{\left( ydx - xdy \right)}{x^2} = 0 \]

\[ \Rightarrow xd\left( xy \right) - x^2 y^3 \frac{\left( xdy - ydx \right)}{x^2} = 0 \]

\[ \Rightarrow \frac{d\left( xy \right)}{x^2 y^2} - \frac{y}{x}d\left( \frac{y}{x} \right) = 0 ...........\left( \because\text{Dividing the whole equation by }x^3 y^2 \right)\]

\[ \Rightarrow \frac{d\left( xy \right)}{x^2 y^2} = \frac{y}{x}d\left( \frac{y}{x} \right)\]
Integrating both sides we get,
\[\Rightarrow \int\frac{d\left( xy \right)}{x^2 y^2} = \int\frac{y}{x}d\left( \frac{y}{x} \right)\]
\[ \Rightarrow - \frac{1}{xy} = \frac{\left( \frac{y}{x} \right)^2}{2} - c\]
\[ \therefore - \frac{1}{xy} - \frac{1}{2} \left( \frac{y}{x} \right)^2 - c = 0\]
\[ \therefore \frac{1}{xy} + \frac{1}{2}\left( \frac{y^2}{x^2} \right) + c = 0\]
\[ \therefore y^3 + 2x + 2c x^2 y = 0\]
It is given that the curves passes through (1, 1).
Hence,
\[y^3 + 2x + 2c x^2 y = 0\]
\[ \left( 1 \right)^3 + 2\left( 1 \right) + 2c\left( 1 \right)\left( 1 \right) = 0\]
\[1 + 2 + 2c = 0\]
\[2c = - 3\]
\[c = - \frac{3}{2}\]
∴ The required curve is \[y^3 + 2x - 2 \times \frac{3}{2} x^2 y = 0\]
\[y^3 + 2x - 2 \times \frac{3}{2} x^2 y = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - MCQ [पृष्ठ १४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
MCQ | Q 19 | पृष्ठ १४१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

`x/a + y/b = 1`


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = a e3x + b e– 2x


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = e2x (a + bx)


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = ex (a cos x + b sin x)


Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)


The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.


The general solution of a differential equation of the type  `dx/dy + P_1 x = Q_1` is ______.


Find the differential equation of all the circles which pass through the origin and whose centres lie on y-axis.


Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.


Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]


\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]


\[\frac{dy}{dx} = y^2 + 2y + 2\]


\[\frac{dy}{dx} + 4x = e^x\]


\[\frac{dy}{dx} = x^2 e^x\]


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]


\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x\]


tan y dx + tan x dy = 0


(1 + xy dx + (1 + yx dy = 0


x cos2 y dx = y cos2 x dy


cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy


Find the general solution of the differential equation `"dy"/"dx" = y/x`.


Solve the differential equation:

cosec3 x dy − cosec y dx = 0


Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is


The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is


The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is


The general solution of the differential equation `(ydx - xdy)/y` = 0


The general solution of the differential equation `x^xdy + (ye^x + 2x)  dx` = 0


What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2)  (-2 < y < 2)`


The general solution of the differential equation y dx – x dy = 0 is ______.


Solve the differential equation: y dx + (x – y2)dy = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×