Advertisements
Advertisements
प्रश्न
\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]
उत्तर
We have,
\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x \log x} + x \sin^2 x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x \log x} + \frac{x}{2}\left( 1 - \cos 2x \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x \log x} + \frac{x}{2} - \frac{x}{2}\cos 2x\]
Integrating both sides, we get
\[\int dy = \int\left( \frac{1}{x \log x} + \frac{x}{2} - \frac{x}{2}\cos 2x \right) dx\]
\[ \Rightarrow \int dy = \int\frac{1}{x \log x}dx + \frac{1}{2}\int x dx - \frac{1}{2}\int\left( x \cos 2x \right)dx\]
\[ \Rightarrow y = \log \left| \log x \right| + \frac{x^2}{4} - \frac{x}{2}\int\left( \cos 2x \right)dx + \frac{1}{2}\int\left[ \frac{d}{dx}\left( x \right)\int\left( \cos 2x \right) dx \right]dx\]
\[ \Rightarrow y = \log \left| \log x \right| + \frac{x^2}{4} - \frac{x \sin 2x}{4} - \frac{\cos 2x}{8} + C\]
APPEARS IN
संबंधित प्रश्न
Write the integrating factor of the following differential equation:
(1+y2) dx−(tan−1 y−x) dy=0
Find the differential equation of the family of lines passing through the origin.
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
`x/a + y/b = 1`
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = a e3x + b e– 2x
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = ex (a cos x + b sin x)
Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.
Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)
The general solution of a differential equation of the type `dx/dy + P_1 x = Q_1` is ______.
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.
Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.
Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.
Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]
Find the differential equation corresponding to y = ae2x + be−3x + cex where a, b, c are arbitrary constants.
Show that the differential equation of all parabolas which have their axes parallel to y-axis is \[\frac{d^3 y}{d x^3} = 0.\]
\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]
\[\frac{dy}{dx} = y^2 + 2y + 2\]
\[\frac{dy}{dx} = x^2 e^x\]
\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x\]
(1 + x) y dx + (1 + y) x dy = 0
x cos2 y dx = y cos2 x dy
Solve the differential equation:
cosec3 x dy − cosec y dx = 0
Find the general solution of the following differential equation:
`x (dy)/(dx) = y - xsin(y/x)`
The general solution of the differential equation `(dy)/(dx) + x/y` = 0 is
If n is any integer, then the general solution of the equation `cos x - sin x = 1/sqrt(2)` is
Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is
Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?
Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`
The general solution of the differential equation y dx – x dy = 0 is ______.
Solve the differential equation: y dx + (x – y2)dy = 0
The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form
(Where 'c' is an arbitrary positive constant of integration)