Advertisements
Advertisements
प्रश्न
\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]
उत्तर
We have,
\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x \log x} + x \sin^2 x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x \log x} + \frac{x}{2}\left( 1 - \cos 2x \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x \log x} + \frac{x}{2} - \frac{x}{2}\cos 2x\]
Integrating both sides, we get
\[\int dy = \int\left( \frac{1}{x \log x} + \frac{x}{2} - \frac{x}{2}\cos 2x \right) dx\]
\[ \Rightarrow \int dy = \int\frac{1}{x \log x}dx + \frac{1}{2}\int x dx - \frac{1}{2}\int\left( x \cos 2x \right)dx\]
\[ \Rightarrow y = \log \left| \log x \right| + \frac{x^2}{4} - \frac{x}{2}\int\left( \cos 2x \right)dx + \frac{1}{2}\int\left[ \frac{d}{dx}\left( x \right)\int\left( \cos 2x \right) dx \right]dx\]
\[ \Rightarrow y = \log \left| \log x \right| + \frac{x^2}{4} - \frac{x \sin 2x}{4} - \frac{\cos 2x}{8} + C\]
APPEARS IN
संबंधित प्रश्न
Write the integrating factor of the following differential equation:
(1+y2) dx−(tan−1 y−x) dy=0
Find the differential equation of the family of lines passing through the origin.
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = e2x (a + bx)
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = ex (a cos x + b sin x)
Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)
The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.
The general solution of a differential equation of the type `dx/dy + P_1 x = Q_1` is ______.
Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.
Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.
The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is
Verify that xy = a ex + b e−x + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]
Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]
Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]
Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]
Show that the differential equation of all parabolas which have their axes parallel to y-axis is \[\frac{d^3 y}{d x^3} = 0.\]
From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.
\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]
\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]
cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy
cosec x (log y) dy + x2y dx = 0
(1 − x2) dy + xy dx = xy2 dx
Find the general solution of the differential equation `"dy"/"dx" = y/x`.
A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.
If n is any integer, then the general solution of the equation `cos x - sin x = 1/sqrt(2)` is
Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is
The number of arbitrary constant in the general solution of a differential equation of fourth order are
The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is
The general solution of the differential equation `(ydx - xdy)/y` = 0
The general solution of the differential equation `x^xdy + (ye^x + 2x) dx` = 0
Solve the differential equation: y dx + (x – y2)dy = 0