Advertisements
Advertisements
प्रश्न
Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.
उत्तर
Given : `y = ae^(bx + 5)`
Differentiating y with respect to x.
`(dy)/(dx) = ae^(bx + 5) (b) = be^(bx + 5) = by` (Since `y= ae^(bx + 5)`) .....1
Differentiating (1) again with respect to x we get
`(d^2y)/(dx^2) = b (dy)/(dx)` .....(2)
Dividing (2) by (1) we get
`((d^2y)/(dx^2))/(dy/dx) = (b(dy/dx))/(by)`
`=> y (d^2y)/(dx^2) = ((dy)/(dx))^2`
APPEARS IN
संबंधित प्रश्न
Write the integrating factor of the following differential equation:
(1+y2) dx−(tan−1 y−x) dy=0
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y2 = a (b2 – x2)
Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.
Solve the differential equation `ye^(x/y) dx = (xe^(x/y) + y^2)dy, (y != 0)`
The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.
The general solution of a differential equation of the type `dx/dy + P_1 x = Q_1` is ______.
Find the differential equation of all the circles which pass through the origin and whose centres lie on y-axis.
Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.
Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]
Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]
From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.
\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]
\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]
\[\frac{dy}{dx} + 4x = e^x\]
\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]
\[(\tan^2 x + 2\tan x + 5)\frac{dy}{dx} = 2(1+\tan x)\sec^2x\]
x cos2 y dx = y cos2 x dy
cosec x (log y) dy + x2y dx = 0
Find the general solution of the differential equation `"dy"/"dx" = y/x`.
A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.
Find the general solution of the following differential equation:
`x (dy)/(dx) = y - xsin(y/x)`
The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is
The general solution of the differential equation `(ydx - xdy)/y` = 0
The general solution of the differential equation `x^xdy + (ye^x + 2x) dx` = 0
What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2) (-2 < y < 2)`
The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form
(Where 'c' is an arbitrary positive constant of integration)