मराठी

Find the Differential Equation Representing the Family of Curves `Y = Ae^(Bx + 5)`. Where A And B Are Arbitrary Constants. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.

उत्तर

Given : `y = ae^(bx + 5)`

Differentiating y with respect to x. 

`(dy)/(dx) = ae^(bx + 5) (b) = be^(bx + 5) = by`    (Since `y= ae^(bx + 5)`)  .....1

Differentiating (1) again with respect to x we get

`(d^2y)/(dx^2) = b (dy)/(dx)`   .....(2)

Dividing (2) by (1) we get

`((d^2y)/(dx^2))/(dy/dx)  = (b(dy/dx))/(by)`

`=> y (d^2y)/(dx^2) = ((dy)/(dx))^2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2017-2018 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Write the integrating factor of the following differential equation:

(1+y2) dx(tan1 yx) dy=0


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y2 = a (b2 – x2)


Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.


Solve the differential equation  `ye^(x/y) dx = (xe^(x/y) + y^2)dy, (y != 0)`


The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.


The general solution of a differential equation of the type  `dx/dy + P_1 x = Q_1` is ______.


Find the differential equation of all the circles which pass through the origin and whose centres lie on y-axis.


Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.


Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]


Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]


From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.


\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]


\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]


\[\frac{dy}{dx} + 4x = e^x\]


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]


\[(\tan^2 x + 2\tan x + 5)\frac{dy}{dx} = 2(1+\tan x)\sec^2x\]


x cos2 y dx = y cos2 x dy


cosec x (log y) dy + x2y dx = 0


Find the general solution of the differential equation `"dy"/"dx" = y/x`.


A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.


Find the general solution of the following differential equation:

`x (dy)/(dx) = y - xsin(y/x)`


The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is


The general solution of the differential equation `(ydx - xdy)/y` = 0


The general solution of the differential equation `x^xdy + (ye^x + 2x)  dx` = 0


What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2)  (-2 < y < 2)`


The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form

(Where 'c' is an arbitrary positive constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×