Advertisements
Advertisements
प्रश्न
Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.
उत्तर
The equation of the family of circles that pass through the origin (0,0) and whose centres lie on the x-axis is given by
\[\left( x - a \right)^2 + y^2 = a^2...............(1)\]
where a is any arbitrary constant.
As this equation has only one arbitrary constant, we shall get a first order differential equation.
Differentiating equation (1) with respect to x, we get
\[2\left( x - a \right) + 2y\frac{dy}{dx} = 0\]
\[ \Rightarrow x - a + y\frac{dy}{dx} = 0\]
\[ \Rightarrow x + y\frac{dy}{dx} = a ..................(2)\]
Substituting the value of a in equation (1), we get
\[\left( x - x - y\frac{dy}{dx} \right)^2 + y^2 = \left( x + y\frac{dy}{dx} \right)^2 \]
\[ \Rightarrow y^2 \left( \frac{dy}{dx} \right)^2 + y^2 = x^2 + 2xy\frac{dy}{dx} + y^2 \left( \frac{dy}{dx} \right)^2 \]
\[ \Rightarrow 2xy\frac{dy}{dx} + x^2 = y^2 \]
It is the required differential equation.
APPEARS IN
संबंधित प्रश्न
Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = e2x (a + bx)
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = ex (a cos x + b sin x)
Solve the differential equation `ye^(x/y) dx = (xe^(x/y) + y^2)dy, (y != 0)`
The general solution of a differential equation of the type `dx/dy + P_1 x = Q_1` is ______.
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.
Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.
Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.
The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is
Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]
Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]
Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]
From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.
\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]
\[\frac{dy}{dx} = y^2 + 2y + 2\]
\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]
\[(\tan^2 x + 2\tan x + 5)\frac{dy}{dx} = 2(1+\tan x)\sec^2x\]
(1 + x) y dx + (1 + y) x dy = 0
x cos2 y dx = y cos2 x dy
cosec x (log y) dy + x2y dx = 0
A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.
Find the general solution of the following differential equation:
`x (dy)/(dx) = y - xsin(y/x)`
If n is any integer, then the general solution of the equation `cos x - sin x = 1/sqrt(2)` is
The number of arbitrary constant in the general solution of a differential equation of fourth order are
Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?
The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is
The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is
The general solution of the differential equation `(ydx - xdy)/y` = 0
The general solution of the differential equation `x^xdy + (ye^x + 2x) dx` = 0
The general solution of the differential equation y dx – x dy = 0 is ______.
The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form
(Where 'c' is an arbitrary positive constant of integration)