मराठी

Find the Differential Equation of All the Circles Which Pass Through the Origin and Whose Centres Lie on X-axis. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.

बेरीज

उत्तर

The equation of the family of circles that pass through the origin (0,0) and whose centres lie on the x-axis is given by

\[\left( x - a \right)^2 + y^2 = a^2...............(1)\]

where a  is any arbitrary constant.

As this equation has only one arbitrary constant, we shall get a first order differential equation.

Differentiating equation (1) with respect to x, we get

\[2\left( x - a \right) + 2y\frac{dy}{dx} = 0\]

\[ \Rightarrow x - a + y\frac{dy}{dx} = 0\]

\[ \Rightarrow x + y\frac{dy}{dx} = a ..................(2)\]

Substituting the value of a in equation (1), we get

\[\left( x - x - y\frac{dy}{dx} \right)^2 + y^2 = \left( x + y\frac{dy}{dx} \right)^2 \]

\[ \Rightarrow y^2 \left( \frac{dy}{dx} \right)^2 + y^2 = x^2 + 2xy\frac{dy}{dx} + y^2 \left( \frac{dy}{dx} \right)^2 \]

\[ \Rightarrow 2xy\frac{dy}{dx} + x^2 = y^2 \]

It is the required differential equation.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.02 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.02 | Q 10 | पृष्ठ १७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = e2x (a + bx)


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = ex (a cos x + b sin x)


Solve the differential equation  `ye^(x/y) dx = (xe^(x/y) + y^2)dy, (y != 0)`


The general solution of a differential equation of the type  `dx/dy + P_1 x = Q_1` is ______.


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.


Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.


Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.


The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is


Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]


Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]


Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]


From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.


\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]


\[\frac{dy}{dx} = y^2 + 2y + 2\]


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]


\[(\tan^2 x + 2\tan x + 5)\frac{dy}{dx} = 2(1+\tan x)\sec^2x\]


(1 + xy dx + (1 + yx dy = 0


x cos2 y dx = y cos2 x dy


cosec x (log y) dy + x2y dx = 0


A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.


Find the general solution of the following differential equation:

`x (dy)/(dx) = y - xsin(y/x)`


If n is any integer, then the general solution of the equation `cos x - sin x = 1/sqrt(2)` is


The number of arbitrary constant in the general solution of a differential equation of fourth order are


Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?


The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is


The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is


The general solution of the differential equation `(ydx - xdy)/y` = 0


The general solution of the differential equation `x^xdy + (ye^x + 2x)  dx` = 0


The general solution of the differential equation y dx – x dy = 0 is ______.


The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form

(Where 'c' is an arbitrary positive constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×