Advertisements
Advertisements
प्रश्न
Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.
उत्तर
The equation of the family of circles that pass through the origin (0,0) and whose centres lie on the x-axis is given by
\[\left( x - a \right)^2 + y^2 = a^2...............(1)\]
where a is any arbitrary constant.
As this equation has only one arbitrary constant, we shall get a first order differential equation.
Differentiating equation (1) with respect to x, we get
\[2\left( x - a \right) + 2y\frac{dy}{dx} = 0\]
\[ \Rightarrow x - a + y\frac{dy}{dx} = 0\]
\[ \Rightarrow x + y\frac{dy}{dx} = a ..................(2)\]
Substituting the value of a in equation (1), we get
\[\left( x - x - y\frac{dy}{dx} \right)^2 + y^2 = \left( x + y\frac{dy}{dx} \right)^2 \]
\[ \Rightarrow y^2 \left( \frac{dy}{dx} \right)^2 + y^2 = x^2 + 2xy\frac{dy}{dx} + y^2 \left( \frac{dy}{dx} \right)^2 \]
\[ \Rightarrow 2xy\frac{dy}{dx} + x^2 = y^2 \]
It is the required differential equation.
APPEARS IN
संबंधित प्रश्न
Write the integrating factor of the following differential equation:
(1+y2) dx−(tan−1 y−x) dy=0
Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
`x/a + y/b = 1`
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y2 = a (b2 – x2)
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = a e3x + b e– 2x
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = e2x (a + bx)
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = ex (a cos x + b sin x)
Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.
Solve the differential equation `ye^(x/y) dx = (xe^(x/y) + y^2)dy, (y != 0)`
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.
Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.
Verify that xy = a ex + b e−x + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]
Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]
Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]
Find the differential equation corresponding to y = ae2x + be−3x + cex where a, b, c are arbitrary constants.
Show that the differential equation of all parabolas which have their axes parallel to y-axis is \[\frac{d^3 y}{d x^3} = 0.\]
\[\frac{dy}{dx} = y^2 + 2y + 2\]
\[\frac{dy}{dx} = x^2 e^x\]
\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]
(1 + x) y dx + (1 + y) x dy = 0
cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy
cosec x (log y) dy + x2y dx = 0
(1 − x2) dy + xy dx = xy2 dx
A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.
Find the general solution of the following differential equation:
`x (dy)/(dx) = y - xsin(y/x)`
The general solution of the differential equation `(dy)/(dx) + x/y` = 0 is
General solution of tan 5θ = cot 2θ is
The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is
The general solution of the differential equation `(ydx - xdy)/y` = 0
The general solution of the differential equation `x^xdy + (ye^x + 2x) dx` = 0
What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2) (-2 < y < 2)`