Advertisements
Advertisements
प्रश्न
Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]
उत्तर
We have,
\[\cos x\frac{dy}{dx} + \left( \sin x \right)y = 1 . . . . . \left( 1 \right)\]
Now,
y = A cos x + sin x
\[\frac{dy}{dx} = - A \sin x + \cos x\]
\[\text{Putting }\frac{dy}{dx} = - A \sin x + \cos x\text{ and }y = A \cos x + \sin x\text{ in (1), we get}\]
\[\text{LHS }= \left( \cos x \right)\left( - A \sin x + \cos x \right) + \left( \sin x \right) \left( A \cos x + \sin x \right)\]
\[ = - A \sin x \cos x + \cos^2 x + A \cos x \sin x + \sin^2 x\]
\[ = \cos^2 x + \sin^2 x\]
\[ = 1\]
= RHS
Thus, y = A cos x + sin x is the solution of the given differential equation.
APPEARS IN
संबंधित प्रश्न
Write the integrating factor of the following differential equation:
(1+y2) dx−(tan−1 y−x) dy=0
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
`x/a + y/b = 1`
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y2 = a (b2 – x2)
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = e2x (a + bx)
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = ex (a cos x + b sin x)
Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.
Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.
Find the differential equation of all the circles which pass through the origin and whose centres lie on y-axis.
Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.
Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.
The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is
Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]
\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]
\[\frac{dy}{dx} = y^2 + 2y + 2\]
\[\frac{dy}{dx} + 4x = e^x\]
\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]
tan y dx + tan x dy = 0
x cos2 y dx = y cos2 x dy
cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy
cosec x (log y) dy + x2y dx = 0
A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.
Find the general solution of the following differential equation:
`x (dy)/(dx) = y - xsin(y/x)`
General solution of tan 5θ = cot 2θ is
Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?
The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is
The general solution of the differential equation `x^xdy + (ye^x + 2x) dx` = 0
Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`
Solve the differential equation: y dx + (x – y2)dy = 0
The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form
(Where 'c' is an arbitrary positive constant of integration)