Advertisements
Advertisements
प्रश्न
Find the differential equation corresponding to y = ae2x + be−3x + cex where a, b, c are arbitrary constants.
उत्तर
We have,
y = ae2x + be−3x + cex .........(1)
Differentiating with respect to x, we get
\[\frac{dy}{dx} = 2a e^{2x} - 3b e^{- 3x} + c e^x . . . . . . . . \left( 2 \right)\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = 4a e^{2x} + 9b e^{- 3x} + c e^x \]
\[ \Rightarrow \frac{d^3 y}{d x^3} = 8a e^{2x} - 27b e^{- 3x} + c e^x \]
\[ \Rightarrow \frac{d^3 y}{d x^3} = 7\left( 2a e^{2x} - 3b e^{- 3x} + c e^x \right) - 6\left( a e^{2x} + b e^{- 3x} + c e^x \right)\]
\[ \Rightarrow \frac{d^3 y}{d x^3} = 7\left( \frac{dy}{dx} \right) - 6y ...........\left[\text{Using (1) and (2)} \right]\]
\[ \Rightarrow \frac{d^3 y}{d x^3} - 7\left( \frac{dy}{dx} \right) + 6y = 0\]
APPEARS IN
संबंधित प्रश्न
Write the integrating factor of the following differential equation:
(1+y2) dx−(tan−1 y−x) dy=0
Find the differential equation of the family of lines passing through the origin.
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
`x/a + y/b = 1`
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = a e3x + b e– 2x
Solve the differential equation `ye^(x/y) dx = (xe^(x/y) + y^2)dy, (y != 0)`
Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)
The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.
The general solution of a differential equation of the type `dx/dy + P_1 x = Q_1` is ______.
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.
Find the differential equation of all the circles which pass through the origin and whose centres lie on y-axis.
Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.
The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is
Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]
Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]
Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]
From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.
\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]
\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]
\[\frac{dy}{dx} + 4x = e^x\]
\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]
\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x\]
(1 + x) y dx + (1 + y) x dy = 0
x cos2 y dx = y cos2 x dy
cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy
Find the general solution of the differential equation `"dy"/"dx" = y/x`.
Find the general solution of the following differential equation:
`x (dy)/(dx) = y - xsin(y/x)`
If n is any integer, then the general solution of the equation `cos x - sin x = 1/sqrt(2)` is
General solution of tan 5θ = cot 2θ is
The number of arbitrary constant in the general solution of a differential equation of fourth order are
The general solution of the differential equation `x^xdy + (ye^x + 2x) dx` = 0
Solve the differential equation: y dx + (x – y2)dy = 0
The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form
(Where 'c' is an arbitrary positive constant of integration)