हिंदी

Find the Differential Equation Corresponding to Y = Ae2x + Be−3x + Cex Where A, B, C Are Arbitrary Constants. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the differential equation corresponding to y = ae2x + be3x + cex where abc are arbitrary constants.

योग

उत्तर

We have,

y = ae2x + be3x + cex            .........(1)

Differentiating with respect to x, we get

\[\frac{dy}{dx} = 2a e^{2x} - 3b e^{- 3x} + c e^x . . . . . . . . \left( 2 \right)\]

\[ \Rightarrow \frac{d^2 y}{d x^2} = 4a e^{2x} + 9b e^{- 3x} + c e^x \]

\[ \Rightarrow \frac{d^3 y}{d x^3} = 8a e^{2x} - 27b e^{- 3x} + c e^x \]

\[ \Rightarrow \frac{d^3 y}{d x^3} = 7\left( 2a e^{2x} - 3b e^{- 3x} + c e^x \right) - 6\left( a e^{2x} + b e^{- 3x} + c e^x \right)\]

\[ \Rightarrow \frac{d^3 y}{d x^3} = 7\left( \frac{dy}{dx} \right) - 6y ...........\left[\text{Using (1) and (2)} \right]\]

\[ \Rightarrow \frac{d^3 y}{d x^3} - 7\left( \frac{dy}{dx} \right) + 6y = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 15 | पृष्ठ १४५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Write the integrating factor of the following differential equation:

(1+y2) dx(tan1 yx) dy=0


Find the differential equation of the family of lines passing through the origin.


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

`x/a + y/b = 1`


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = a e3x + b e– 2x


Solve the differential equation  `ye^(x/y) dx = (xe^(x/y) + y^2)dy, (y != 0)`


Find a particular solution of the differential equation (x - y) (dx + dy) = dx - dy, given that y = -1, when x = 0. (Hint: put x - y = t)


The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.


The general solution of a differential equation of the type  `dx/dy + P_1 x = Q_1` is ______.


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.


Find the differential equation of all the circles which pass through the origin and whose centres lie on y-axis.


Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.


The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is


Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]


Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]


Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]


From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.


\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]


\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]


\[\frac{dy}{dx} + 4x = e^x\]


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]


\[\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x\]


(1 + xy dx + (1 + yx dy = 0


x cos2 y dx = y cos2 x dy


cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy


Find the general solution of the differential equation `"dy"/"dx" = y/x`.


Find the general solution of the following differential equation:

`x (dy)/(dx) = y - xsin(y/x)`


If n is any integer, then the general solution of the equation `cos x - sin x = 1/sqrt(2)` is


General solution of tan 5θ = cot 2θ is


The number of arbitrary constant in the general solution of a differential equation of fourth order are


The general solution of the differential equation `x^xdy + (ye^x + 2x)  dx` = 0


Solve the differential equation: y dx + (x – y2)dy = 0


The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form

(Where 'c' is an arbitrary positive constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×