मराठी

Find the Differential Equation Corresponding to Y = Ae2x + Be−3x + Cex Where A, B, C Are Arbitrary Constants. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the differential equation corresponding to y = ae2x + be3x + cex where abc are arbitrary constants.

बेरीज

उत्तर

We have,

y = ae2x + be3x + cex            .........(1)

Differentiating with respect to x, we get

\[\frac{dy}{dx} = 2a e^{2x} - 3b e^{- 3x} + c e^x . . . . . . . . \left( 2 \right)\]

\[ \Rightarrow \frac{d^2 y}{d x^2} = 4a e^{2x} + 9b e^{- 3x} + c e^x \]

\[ \Rightarrow \frac{d^3 y}{d x^3} = 8a e^{2x} - 27b e^{- 3x} + c e^x \]

\[ \Rightarrow \frac{d^3 y}{d x^3} = 7\left( 2a e^{2x} - 3b e^{- 3x} + c e^x \right) - 6\left( a e^{2x} + b e^{- 3x} + c e^x \right)\]

\[ \Rightarrow \frac{d^3 y}{d x^3} = 7\left( \frac{dy}{dx} \right) - 6y ...........\left[\text{Using (1) and (2)} \right]\]

\[ \Rightarrow \frac{d^3 y}{d x^3} - 7\left( \frac{dy}{dx} \right) + 6y = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 15 | पृष्ठ १४५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the differential equation of the family of lines passing through the origin.


Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

`x/a + y/b = 1`


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y2 = a (b2 – x2)


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = a e3x + b e– 2x


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = e2x (a + bx)


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = ex (a cos x + b sin x)


Solve the differential equation  `ye^(x/y) dx = (xe^(x/y) + y^2)dy, (y != 0)`


The general solution of a differential equation of the type  `dx/dy + P_1 x = Q_1` is ______.


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.


Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.


Find the differential equation of all the circles which pass through the origin and whose centres lie on y-axis.


Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.


The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is


Verify that xy = a ex + b ex + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]


Show that y = C x + 2C2 is a solution of the differential equation \[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.\]


Show that the differential equation of all parabolas which have their axes parallel to y-axis is \[\frac{d^3 y}{d x^3} = 0.\]


\[\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}\]


\[\frac{dy}{dx} = x^2 e^x\]


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]


(1 + xy dx + (1 + yx dy = 0


cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy


A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.


Find the general solution of the following differential equation:

`x (dy)/(dx) = y - xsin(y/x)`


The general solution of the differential equation `(dy)/(dx) + x/y` = 0 is


If n is any integer, then the general solution of the equation `cos x - sin x = 1/sqrt(2)` is


The number of arbitrary constant in the general solution of a differential equation of fourth order are


Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?


The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is


The general solution of the differential equation `(ydx - xdy)/y` = 0


Find the general solution of differential equation `(dy)/(dx) = (1 - cosx)/(1 + cosx)`


The general solution of the differential equation y dx – x dy = 0 is ______.


Solve the differential equation: y dx + (x – y2)dy = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×