Advertisements
Advertisements
प्रश्न
Verify that xy = a ex + b e−x + x2 is a solution of the differential equation \[x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.\]
उत्तर
We have,
\[xy = a e^x + b e^{- x} + x^2 \]
Differentiating with respect to x on both sides, we get
\[ \Rightarrow x\frac{dy}{dx} + y = a e^x - b e^{- x} + 2x\]
Again differentiating with respect to x on both sides, we get
\[ \Rightarrow x\frac{d^2 y}{d x^2} + \frac{dy}{dx} + \frac{dy}{dx} = a e^x + b e^{- x} + 2\]
\[ \Rightarrow x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} = xy - x^2 + 2 .........\left[ \because xy = a e^x + b e^{- x} + x^2 \right]\]
\[ \Rightarrow x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx}- xy + x^2 - 2=0\]
Thus, xy = a ex + b e−x + x2 is the solution of the given differential equation.
APPEARS IN
संबंधित प्रश्न
Find the differential equation of the family of lines passing through the origin.
Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = a e3x + b e– 2x
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
y = e2x (a + bx)
Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.
The general solution of the differential equation `(y dx - x dy)/y = 0` is ______.
The general solution of a differential equation of the type `dx/dy + P_1 x = Q_1` is ______.
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.
Find the differential equation of all the circles which pass through the origin and whose centres lie on y-axis.
Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.
Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.
The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is
Show that y2 − x2 − xy = a is a solution of the differential equation \[\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.\]
Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]
Find the differential equation corresponding to y = ae2x + be−3x + cex where a, b, c are arbitrary constants.
From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.
\[\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}\]
\[\frac{dy}{dx} + 4x = e^x\]
\[\frac{dy}{dx} = x^2 e^x\]
\[(\tan^2 x + 2\tan x + 5)\frac{dy}{dx} = 2(1+\tan x)\sec^2x\]
tan y dx + tan x dy = 0
x cos2 y dx = y cos2 x dy
cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy
Find the general solution of the differential equation `"dy"/"dx" = y/x`.
A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.
Solve the differential equation:
cosec3 x dy − cosec y dx = 0
The general solution of the differential equation `(dy)/(dx) + x/y` = 0 is
Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is
Which of the following equations has `y = c_1e^x + c_2e^-x` as the general solution?
The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is
The general solution of the differential equation `(ydx - xdy)/y` = 0
What is the general solution of differential equation `(dy)/(dx) = sqrt(4 - y^2) (-2 < y < 2)`