मराठी

D Y D X + 4 X = E X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} + 4x = e^x\]

बेरीज

उत्तर

We have,

\[\frac{dy}{dx} + 4x = e^x \]

\[ \Rightarrow \frac{dy}{dx} = e^x - 4x\]

\[ \Rightarrow dy = \left( e^x - 4x \right)dx\]

Integrating both sides, we get

\[\int dy = \int\left( e^x - 4x \right)dx\]

\[ \Rightarrow y = e^x - 2 x^2 + C\]

\[ \Rightarrow y + 2 x^2 = e^x + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 21 | पृष्ठ १४५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Write the integrating factor of the following differential equation:

(1+y2) dx(tan1 yx) dy=0


Find the differential equation of the family of lines passing through the origin.


Find the differential equation representing the family of curves v=A/r+ B, where A and B are arbitrary constants.


Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y = ex (a cos x + b sin x)


Find the particular solution of the differential equation (1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.


The general solution of a differential equation of the type  `dx/dy + P_1 x = Q_1` is ______.


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is ______.


Find the differential equation representing the family of curves `y = ae^(bx + 5)`. where a and b are arbitrary constants.


Form the differential equation having \[y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B\], where A and B are arbitrary constants, as its general solution.


The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is


Verify that y = A cos x + sin x satisfies the differential equation \[\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.\]


\[\frac{dy}{dx} = x^2 e^x\]


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]


\[(\tan^2 x + 2\tan x + 5)\frac{dy}{dx} = 2(1+\tan x)\sec^2x\]


tan y dx + tan x dy = 0


x cos2 y dx = y cos2 x dy


cosec x (log y) dy + x2y dx = 0


Find the general solution of the differential equation `"dy"/"dx" = y/x`.


A solution of the differential equation `("dy"/"dx")^2 - x "dy"/"dx" + y` = 0 is ______.


Find the general solution of the following differential equation:

`x (dy)/(dx) = y - xsin(y/x)`


If n is any integer, then the general solution of the equation `cos x - sin x = 1/sqrt(2)` is


Solution of the equation 3 tan(θ – 15) = tan(θ + 15) is


The number of arbitrary constant in the general solution of a differential equation of fourth order are


The general solution of the differential equation `(dy)/(dx) = e^(x + y)` is


The general solution of the differential equation of the type `(dx)/(dy) + p_1y = theta_1` is


The general solution of the differential equation `(ydx - xdy)/y` = 0


The general solution of the differential equation `x^xdy + (ye^x + 2x)  dx` = 0


The general solution of the differential equation y dx – x dy = 0 is ______.


The general solution of the differential equation ydx – xdy = 0; (Given x, y > 0), is of the form

(Where 'c' is an arbitrary positive constant of integration)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×